organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,5-Trimethoxybenzoic acid

Ghulam Qadeer,^a Nasim Hasan Rama,^a* Murat Taş,^b Okan Zafer Yesilel^c and Wai-Yeung Wong^d

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey, ^cDepartment of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, Eskisehir, Turkey, and ^dDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong Correspondence e-mail: nasimhrama@yahoo.com

Received 3 July 2007; accepted 9 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.039; *wR* factor = 0.094; data-to-parameter ratio = 8.9.

The asymmetric unit of the title compound, C₁₀H₁₂O₅, contains two crystallographically independent molecules. In the crystal structure, intermolecular C-H···O and O- $H \cdot \cdot \cdot O$ hydrogen bonds link the molecules.

Related literature

For related literature, see: Gopalakrishna & Cartz (1972); Bryan & White (1982a,b); Frankenbach et al. (1991); Khan et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C10H12O5 $M_r = 212.20$ Monoclinic, Pc a = 7.3384 (3) Å b = 8.8325 (3) Å c = 15.7560 (5) Å $\beta = 96.576$ (2)

V = 1014.53 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 298 (2) K $0.25\,\times\,0.15\,\times\,0.13$ mm

Data collection

```
Bruker APEXII area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.935, T_{\max} = 0.984
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.094$	independent and constrained
S = 1.06	refinement
2510 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
281 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C9−H9 <i>C</i> ···O7 ⁱ	0.96	2.49	3.405 (4)	159
$C18 - H18A \cdots O5^{ii}$	0.96	2.51	3.321 (4)	142
C19−H19C···O1 ⁱⁱⁱ	0.96	2.50	3.404 (5)	158
$O2 - H2 \cdots O7^{iv}$	0.82	1.83	2.641 (3)	172
$D6-H6\cdots O1^{v}$	0.96 (2)	1.71 (2)	2.656 (3)	170 (5)

7599 measured reflections

 $R_{\rm int} = 0.032$

2510 independent reflections

1563 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x - 1, y, z; (ii) $x, -y + 1, z - \frac{1}{2}$; (iii) x + 1, y, z; (iv) $x - 1, -y + 1, z - \frac{1}{2};$ (v) $x + 1, -y + 1, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2288).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bryan, R. F. & White, D. H. (1982a). Acta Cryst. B38, 1012-1014.
- Bryan, R. F. & White, D. H. (1982b). Acta Cryst. B38, 1014-1016.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Frankenbach, G. M., Britton, D. & Etter, M. C. (1991). Acta Cryst. C47, 553-555

Gopalakrishna, E. M. & Cartz, L. (1972). Acta Cryst. B28, 2917-2924.

- Khan, G. S., Rama, N. H., Noor, A., Kempe, R. & Qadeer, G. (2006). Z. Kristallogr. New Cryst. Struct. 221, 153-154.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3456 [doi:10.1107/S1600536807033429]

3,4,5-Trimethoxybenzoic acid

G. Qadeer, N. H. Rama, M. Tas, O. Z. Yesilel and W.-Y. Wong

Comment

ortho-Alkoxybenzoic acids are a class of acids which crystallize with different packing modes. The distinctive behaviour of 2-ethoxybenzoic acid which forms monomers is due to the formation of an intramolecular hydrogen bond (Gopalakrishna & Cartz, 1972). 2,3-Dimethoxybenzoic acid forms the normal acid dimer pattern (Bryan & White, 1982*a*). 2,6- Dimethoxybenzoic acid (Bryan & White, 1982*b*) and 2,6-dimethoxy-3-nitrobenzoic acid (Frankenbach *et al.*, 1991) form catemers. The carboxyl group of 2,6-dimethoxybenzoic acid exists in an anti conformation, while the carboxyl group of 2,6-dimethoxybenzoic acid exists in an anti conformation, while the carboxyl group of 2,6-dimethoxy-3-nitrobenzoic acid structure of the title compound, (I).

The asymmetric unit of the title compound, (I), (Fig. 1) contains two crystallographicaly independent molecules, in which the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987). The C—O bonds of the carboxyl groups (Table 1) are compatible with the corresponding values in similar structure (Khan *et al.*, 2006), and smaller than those usually observed in carboxylic acid [1.365 Å]. The valence angles C3—C2—C7 [121.5 (3)°] and C13—C12—C17 [121.9 (2)°] are larger than the standard value of 120°, due to the presence of methoxy and carboxyl groups.

In the crystal structure, the intermolecular O—H···O hydrogen bonds (Table 2) form catemers, as observed in 2,6-dimethoxybenzoic acid and 2,6-dimethoxy-3 -nitrobenzoic acid, the intermolecular C—H···O and O—H···O hydrogen bonds (Table 2, Fig. 2) link the molecules, in which they seem to be effective in the stabilization of the structure.

Experimental

The title compound was purchased and crystallized from ethyl acetate by slow evaporation.

Refinement

H6 and H7 were located in difference syntheses and refined isotropicaly $[O6-H6 = 0.96 (2) \text{ Å}, U_{iso}(H) = 0.14 (2) \text{ Å}^2$ and C7-H7 = 0.99 (3) Å, $U_{iso}(H) = 0.046 (8) \text{ Å}^2]$. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

3,4,5-Trimethoxybenzoic acid

Crystal data	
C ₁₀ H ₁₂ O ₅	$F_{000} = 448$
$M_r = 212.20$	$D_{\rm x} = 1.389 {\rm ~Mg~m}^{-3}$
Monoclinic, Pc	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P -2yc	Cell parameters from 1520 reflections
a = 7.3384 (3) Å	$\theta = 2.8 - 22.6^{\circ}$
<i>b</i> = 8.8325 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 15.7560 (5) Å	T = 298 (2) K
$\beta = 96.576 \ (2)^{\circ}$	Monoclinic, colourless
V = 1014.53 (6) Å ³	$0.25\times0.15\times0.13~mm$
Z = 4	

Data collection

Bruker APEXII area-detector diffractometer	2510 independent reflections
Radiation source: fine-focus sealed tube	1563 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 298(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 9$
$T_{\min} = 0.935, T_{\max} = 0.984$	$k = -11 \longrightarrow 11$
7599 measured reflections	$l = -21 \rightarrow 20$

Refinement

	H atoms treated by a mixture of
Refinement on F	independent and constrained refinement

Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0445P)^2]$
Louis equates maximi fun	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.039$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.094$	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.06	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
2510 reflections	Extinction correction: SHELXL97,
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
281 parameters	Extinction coefficient: 0.015 (2)
3 restraints	
Primary atom site location: structure-invariant direct	
methods	
Secondary atom site location: difference Fourier map	
Hydrogen site location: inferred from neighbouring	

Special details

sites

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.1652 (4)	0.4366 (4)	-0.11562 (19)	0.0433 (7)
C2	-0.0769 (4)	0.3669 (4)	-0.03518 (17)	0.0395 (7)
C3	-0.0469 (4)	0.2135 (4)	-0.03295 (19)	0.0441 (7)
Н3	-0.0773	0.1551	-0.0816	0.053*
C4	0.0301 (4)	0.1455 (4)	0.04333 (18)	0.0443 (8)
C5	0.0762 (4)	0.2341 (4)	0.11517 (18)	0.0445 (7)
C6	0.0479 (4)	0.3899 (4)	0.11177 (18)	0.0468 (8)
C7	-0.0298 (4)	0.4573 (4)	0.03633 (18)	0.0447 (7)
C8	0.0387 (6)	-0.0963 (4)	-0.0221 (2)	0.0709 (11)
H8A	0.0682	-0.1996	-0.0074	0.106*
H8B	0.1169	-0.0610	-0.0627	0.106*
H8C	-0.0870	-0.0898	-0.0465	0.106*
C9	0.0388 (5)	0.0870 (5)	0.2365 (2)	0.0827 (13)
H9A	0.1068	0.0464	0.2871	0.124*
H9B	-0.0155	0.0056	0.2020	0.124*
Н9С	-0.0560	0.1526	0.2523	0.124*
C10	0.1072 (6)	0.6268 (4)	0.1798 (2)	0.0699 (10)
H10A	0.1452	0.6680	0.2354	0.105*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10B	-0.0122	0.6651	0.1592	0.105*
H10C	0.1933	0.6558	0.1412	0.105*
C11	0.6042 (4)	0.3894 (3)	0.17572 (18)	0.0413 (7)
C12	0.5381 (4)	0.3165 (3)	0.09221 (17)	0.0389 (7)
C13	0.4686 (4)	0.4063 (3)	0.02396 (17)	0.0417 (7)
H13	0.4595	0.5106	0.0303	0.050*
C14	0.4126 (4)	0.3378 (3)	-0.05409 (17)	0.0414 (7)
C15	0.4295 (4)	0.1813 (4)	-0.06306 (18)	0.0431 (7)
C16	0.4987 (4)	0.0940 (4)	0.00702 (19)	0.0454 (7)
C17	0.5527 (4)	0.1624 (3)	0.08492 (18)	0.0419 (7)
H17	0.5984	0.1044	0.1318	0.050*
C18	0.3239 (5)	0.5732 (4)	-0.1208 (2)	0.0571 (8)
H18A	0.2743	0.6122	-0.1755	0.086*
H18B	0.4418	0.6179	-0.1043	0.086*
H18C	0.2428	0.5973	-0.0791	0.086*
C19	0.4960 (6)	0.0527 (5)	-0.1884 (2)	0.0837 (12)
H19A	0.4354	0.0096	-0.2400	0.126*
H19B	0.5644	-0.0246	-0.1559	0.126*
H19C	0.5780	0.1312	-0.2024	0.126*
C20	0.5773 (7)	-0.1522 (4)	0.0628 (3)	0.0877 (14)
H20A	0.5782	-0.2558	0.0445	0.132*
H20B	0.4990	-0.1419	0.1072	0.132*
H20C	0.6996	-0.1216	0.0840	0.132*
01	-0.2149 (3)	0.3553 (3)	-0.17842 (12)	0.0592 (6)
O2	-0.1847 (3)	0.5806 (3)	-0.11614 (14)	0.0617 (6)
H2	-0.2344	0.6076	-0.1630	0.093*
O3	0.0653 (3)	-0.0053 (3)	0.05251 (14)	0.0598 (6)
O4	0.1584 (3)	0.1701 (3)	0.18945 (13)	0.0590 (7)
05	0.1003 (4)	0.4673 (3)	0.18502 (13)	0.0628 (6)
O6	0.6062 (4)	0.5329 (2)	0.17925 (14)	0.0608 (6)
07	0.6579 (3)	0.3066 (2)	0.23837 (12)	0.0541 (6)
08	0.3429 (3)	0.4135 (2)	-0.12612 (13)	0.0558 (6)
09	0.3628 (3)	0.1150 (3)	-0.13918 (13)	0.0575 (6)
O10	0.5106 (3)	-0.0589 (3)	-0.00757 (14)	0.0615 (6)
Н6	0.661 (7)	0.568 (6)	0.234 (2)	0.14 (2)*
H7	-0.064 (4)	0.565 (4)	0.0350 (18)	0.046 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0456 (18)	0.051 (2)	0.0310 (15)	-0.0060 (15)	-0.0047 (12)	0.0086 (13)
C2	0.0339 (16)	0.054 (2)	0.0291 (14)	-0.0009 (13)	-0.0029 (12)	0.0098 (13)
C3	0.0480 (18)	0.051 (2)	0.0318 (15)	-0.0043 (14)	-0.0010 (13)	0.0044 (12)
C4	0.046 (2)	0.0479 (19)	0.0378 (17)	0.0009 (14)	-0.0010 (13)	0.0063 (14)
C5	0.0430 (17)	0.057 (2)	0.0313 (16)	0.0000 (15)	-0.0046 (13)	0.0122 (14)
C6	0.0467 (19)	0.058 (2)	0.0333 (16)	-0.0025 (15)	-0.0047 (14)	0.0053 (13)
C7	0.0487 (17)	0.051 (2)	0.0329 (15)	0.0030 (15)	-0.0043 (12)	0.0086 (13)
C8	0.099 (3)	0.058 (2)	0.055 (2)	0.002 (2)	0.007 (2)	-0.0005 (16)

C9	0.080 (3)	0.116 (4)	0.053 (2)	0.021 (2)	0.0102 (19)	0.042 (2)
C10	0.097 (3)	0.060 (2)	0.0473 (19)	-0.006 (2)	-0.0164 (18)	-0.0026 (16)
C11	0.0448 (17)	0.0470 (19)	0.0298 (14)	-0.0001 (14)	-0.0052 (12)	-0.0052 (13)
C12	0.0369 (17)	0.049 (2)	0.0292 (15)	-0.0046 (13)	-0.0028 (12)	-0.0073 (13)
C13	0.0453 (17)	0.0470 (19)	0.0309 (15)	-0.0012 (14)	-0.0039 (12)	-0.0043 (12)
C14	0.0424 (18)	0.051 (2)	0.0284 (16)	-0.0046 (14)	-0.0050 (13)	-0.0028 (13)
C15	0.0448 (17)	0.0515 (19)	0.0314 (15)	-0.0060 (14)	-0.0030 (13)	-0.0094 (13)
C16	0.0482 (19)	0.0428 (18)	0.0441 (18)	-0.0072 (15)	0.0007 (14)	-0.0076 (14)
C17	0.0492 (19)	0.043 (2)	0.0317 (15)	0.0009 (14)	-0.0010 (13)	0.0005 (12)
C18	0.066 (2)	0.059 (2)	0.0427 (18)	0.0059 (18)	-0.0086 (14)	0.0063 (15)
C19	0.087 (3)	0.114 (3)	0.053 (2)	-0.024 (2)	0.0203 (19)	-0.038 (2)
C20	0.139 (4)	0.045 (2)	0.073 (3)	-0.005 (2)	-0.016 (3)	0.0014 (18)
01	0.0769 (16)	0.0596 (14)	0.0354 (12)	-0.0041 (12)	-0.0178 (10)	0.0064 (10)
O2	0.0873 (17)	0.0527 (16)	0.0389 (12)	0.0024 (13)	-0.0192 (10)	0.0081 (10)
O3	0.0867 (17)	0.0501 (15)	0.0410 (13)	0.0093 (12)	0.0007 (11)	0.0095 (10)
O4	0.0598 (14)	0.0743 (17)	0.0388 (13)	0.0058 (11)	-0.0125 (10)	0.0168 (11)
O5	0.0889 (17)	0.0606 (15)	0.0329 (12)	-0.0023 (13)	-0.0195 (11)	0.0012 (9)
O6	0.0958 (18)	0.0425 (14)	0.0385 (13)	0.0029 (12)	-0.0162 (11)	-0.0090 (9)
O7	0.0741 (15)	0.0502 (14)	0.0334 (11)	-0.0018 (11)	-0.0132 (10)	-0.0021 (9)
08	0.0729 (16)	0.0597 (16)	0.0300 (11)	0.0019 (12)	-0.0152 (10)	-0.0018 (9)
O9	0.0653 (15)	0.0680 (15)	0.0359 (12)	-0.0065 (11)	-0.0083 (10)	-0.0180 (10)
O10	0.0888 (18)	0.0434 (13)	0.0489 (13)	-0.0058 (12)	-0.0066 (11)	-0.0093 (10)

Geometric parameters (Å, °)

C1—O1	1.243 (4)	C11—O6	1.269 (3)
C1—O2	1.279 (4)	C11—C12	1.495 (4)
C1—C2	1.489 (4)	C12—C17	1.372 (4)
C2—C3	1.373 (4)	C12—C13	1.386 (4)
C2—C7	1.392 (4)	C13—C14	1.390 (4)
C3—C4	1.403 (4)	С13—Н13	0.9300
С3—Н3	0.9300	C14—O8	1.365 (3)
C4—O3	1.361 (4)	C14—C15	1.396 (4)
C4—C5	1.386 (4)	C15—O9	1.374 (3)
C5—O4	1.375 (3)	C15—C16	1.394 (4)
C5—C6	1.391 (4)	C16—O10	1.374 (4)
C6—O5	1.359 (4)	C16—C17	1.385 (4)
C6—C7	1.392 (4)	С17—Н17	0.9300
С7—Н7	0.99 (3)	C18—O8	1.420 (4)
C8—O3	1.418 (4)	C18—H18A	0.9600
C8—H8A	0.9600	C18—H18B	0.9600
C8—H8B	0.9600	C18—H18C	0.9600
C8—H8C	0.9600	C19—O9	1.426 (4)
С9—О4	1.417 (4)	С19—Н19А	0.9600
С9—Н9А	0.9600	С19—Н19В	0.9600
С9—Н9В	0.9600	С19—Н19С	0.9600
С9—Н9С	0.9600	C20—O10	1.422 (5)
C10—O5	1.413 (4)	C20—H20A	0.9600
C10—H10A	0.9600	С20—Н20В	0.9600

C10—H10B	0 9600	C20—H20C	0 9600
C10—H10C	0.9600	02—H2	0.8200
C11—O7	1.255 (3)	Об—Н6	0.96 (2)
С1—О2—Н2	109.5	H10A—C10—H10B	109.5
C4-O3-C8	117 4 (3)	05-C10-H10C	109.5
$C_{5} - C_{9}$	1149(2)	H10A - C10 - H10C	109.5
$C_{6} = C_{10}$	117.5(2)	H10B-C10-H10C	109.5
C1106H6	111.3	07-011-06	109.5
$C_{14} = 08 = C_{18}$	117(9)	07	123.1(3) 118.9(3)
$C_{14} = 0.0 = 0.0$	117.9(2) 116.2(2)	06 C11 C12	118.9(3)
$C_{13} = 0_{10} = C_{13}$	110.2(2) 117.5(2)	C_{17} C_{12} C_{13}	118.0(3)
$C_{10} = 010 = 020$	117.3(2) 122.1(2)	C17 - C12 - C13	121.9(2)
01 - 01 - 02	125.1(3)	C17 - C12 - C11	118.7(2)
01 - C1 - C2	119.8 (3)	C13 - C12 - C11	119.4 (3)
02	117.0 (3)		118.9 (3)
$C_3 = C_2 = C_1$	121.4 (2)	С12—С13—Н13	120.6
C3-C2-C1	118.9 (3)	C14—C13—H13	120.6
C7—C2—C1	119.7 (3)	O8—C14—C13	124.5 (3)
C2—C3—C4	119.5 (3)	O8—C14—C15	115.4 (2)
С2—С3—Н3	120.3	C13—C14—C15	120.0 (2)
С4—С3—Н3	120.3	O9—C15—C16	121.1 (3)
O3—C4—C5	116.1 (3)	O9—C15—C14	118.9 (3)
O3—C4—C3	124.2 (3)	C16—C15—C14	119.7 (2)
C5—C4—C3	119.6 (3)	O10-C16-C17	124.1 (3)
O4—C5—C4	120.3 (3)	O10-C16-C15	115.8 (2)
O4—C5—C6	119.2 (3)	C17—C16—C15	120.1 (3)
C4—C5—C6	120.4 (3)	C12—C17—C16	119.4 (3)
O5—C6—C7	123.9 (3)	С12—С17—Н17	120.3
O5—C6—C5	116.0 (2)	С16—С17—Н17	120.3
C7—C6—C5	120.0 (3)	O8—C18—H18A	109.5
C6—C7—C2	119.0 (3)	O8—C18—H18B	109.5
С6—С7—Н7	120.7 (17)	H18A—C18—H18B	109.5
С2—С7—Н7	119.9 (17)	O8—C18—H18C	109.5
O3—C8—H8A	109.5	H18A—C18—H18C	109.5
O3—C8—H8B	109.5	H18B—C18—H18C	109.5
H8A—C8—H8B	109.5	O9—C19—H19A	109.5
O3—C8—H8C	109.5	O9—C19—H19B	109.5
H8A—C8—H8C	109.5	H19A—C19—H19B	109.5
H8B—C8—H8C	109.5	09-C19-H19C	109.5
04—C9—H9A	109.5	H19A - C19 - H19C	109.5
04—C9—H9B	109.5	H19B-C19-H19C	109.5
$H_{0} = C_{0} = H_{0}B$	109.5	$010-C20-H20\Delta$	109.5
$\Omega = \Omega = H \Omega$	109.5	010 - C20 - H20R	109.5
	109.5	$H_{20}A = C_{20} = H_{20}B$	109.5
	109.5	1120A - C20 - 1120B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$H_{20A} = C_{20} = H_{20C}$	109.5
05 C10 U10D	109.5	$H_2 U A - C_2 U - H_2 U C$	109.5
03—010—H10B	109.3	п20B—C20—H20C	109.5
O1—C1—C2—C3	2.0 (4)	C12—C13—C14—O8	-179.6 (3)
O2—C1—C2—C3	-177.5 (3)	C12-C13-C14-C15	-1.0(4)

-176.8 (3)	O8—C14—C15—O9	-5.3 (4)
3.6 (4)	C13—C14—C15—O9	176.0 (3)
1.1 (5)	O8—C14—C15—C16	-179.7 (3)
-177.7 (3)	C13-C14-C15-C16	1.5 (5)
179.9 (3)	O9-C15-C16-O10	5.6 (5)
-0.6 (4)	C14-C15-C16-O10	-180.0 (3)
2.1 (4)	O9-C15-C16-C17	-175.2 (3)
-177.4 (3)	C14-C15-C16-C17	-0.9 (5)
179.1 (3)	C13-C12-C17-C16	0.8 (5)
-0.5 (5)	C11—C12—C17—C16	-177.5 (3)
-2.0 (4)	O10-C16-C17-C12	178.8 (3)
-178.9 (3)	C15—C16—C17—C12	-0.3 (5)
178.0 (3)	C5—C4—O3—C8	-173.1 (3)
1.0 (5)	C3—C4—O3—C8	6.4 (4)
179.5 (3)	C4—C5—O4—C9	-76.3 (4)
-0.5 (5)	C6—C5—O4—C9	106.8 (4)
-0.6 (5)	C7—C6—O5—C10	-12.0 (5)
178.2 (3)	C5-C6-O5-C10	168.0 (3)
-5.4 (4)	C13—C14—O8—C18	-0.9 (4)
173.4 (3)	C15-C14-O8-C18	-179.6 (3)
176.3 (3)	C16—C15—O9—C19	-73.3 (4)
-5.0 (4)	C14—C15—O9—C19	112.3 (4)
-0.2 (4)	C17-C16-O10-C20	2.0 (5)
178.1 (3)	C15-C16-O10-C20	-178.9 (3)
	$\begin{array}{c} -176.8 (3) \\ 3.6 (4) \\ 1.1 (5) \\ -177.7 (3) \\ 179.9 (3) \\ -0.6 (4) \\ 2.1 (4) \\ -177.4 (3) \\ 179.1 (3) \\ -0.5 (5) \\ -2.0 (4) \\ -178.9 (3) \\ 178.0 (3) \\ 1.0 (5) \\ 179.5 (3) \\ -0.5 (5) \\ -0.6 (5) \\ 178.2 (3) \\ -5.4 (4) \\ 173.4 (3) \\ 176.3 (3) \\ -5.0 (4) \\ -0.2 (4) \\ 178.1 (3) \end{array}$	-176.8 (3) $08-C14-C15-09$ $3.6 (4)$ $C13-C14-C15-09$ $1.1 (5)$ $08-C14-C15-C16$ $-177.7 (3)$ $C13-C14-C15-C16$ $179.9 (3)$ $09-C15-C16-010$ $-0.6 (4)$ $C14-C15-C16-010$ $2.1 (4)$ $09-C15-C16-C17$ $-177.4 (3)$ $C13-C12-C17-C16$ $-0.5 (5)$ $C11-C12-C17-C16$ $-0.5 (5)$ $C15-C16-C17-C12$ $-178.9 (3)$ $C15-C16-C17-C12$ $178.0 (3)$ $C5-C4-O3-C8$ $1.0 (5)$ $C3-C4-O3-C8$ $1.0 (5)$ $C3-C4-O3-C8$ $179.5 (3)$ $C4-C5-O4-C9$ $-0.6 (5)$ $C7-C6-O5-C10$ $178.2 (3)$ $C5-C6-O5-C10$ $-5.4 (4)$ $C13-C14-O8-C18$ $176.3 (3)$ $C16-C15-O9-C19$ $-5.0 (4)$ $C14-C15-O9-C19$ $-0.2 (4)$ $C17-C16-O10-C20$ $178.1 (3)$ $C15-C16-O10-C20$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C9—H9C···O7 ⁱ	0.96	2.49	3.405 (4)	159
C18—H18A···O5 ⁱⁱ	0.96	2.51	3.321 (4)	142
C19—H19C···O1 ⁱⁱⁱ	0.96	2.50	3.404 (5)	158
O2—H2···O7 ^{iv}	0.82	1.83	2.641 (3)	172
O6—H6…O1 ^v	0.96 (2)	1.71 (2)	2.656 (3)	170 (5)
Summatry adday (i) $u = 1 + u = r$ (ii) $u = u + 1 = 1/2$ (iii)		n + 1 = 1/2 (n) $n + 1$	n + 1 = +1/2	

Symmetry codes: (i) x-1, y, z; (ii) x, -y+1, z-1/2; (iii) x+1, y, z; (iv) x-1, -y+1, z-1/2; (v) x+1, -y+1, z+1/2.

sup-9